SKU: C042  / 
    CAS Number: 59865-13-3

    Cyclosporin A, EvoPure®

    $83,935.63 - $311,507.59

    Cyclosporin A, EvoPure® is a neutral, cyclic oligopeptide with immunosuppressive activity.  Cyclosporin A has the most potent immunosuppressive activity of the metabolites (Cyclosporin B, C, D, E, and H).  Cyclosporin A has been used to prevent organ transplant rejection.  Cyclosporin A is soluble in ethanol and DMSO.

    EvoPure® products have been fully characterized by spectral analysis and are shipped with a comprehensive certificate of analysis containing lot-specific HPLC, MS, HNMR, and FTIR data.

    For more Cyclosporin products, click here.

    Mechanism of Action After entering a T-cell, Cyclosporin A associates with the cytosolic protein cyclophilin which helps in protein folding. Cyclosporin A binds to cyclophilins and this complex binds another cytosolic protein phosphatase called Calcineurin (protein phosphatase 2B) that dephosphorylates a transcription factor (nuclear factor of activated T-cells, or NF-AT) needed for expression of interleukin 2 (IL-2.). It also blocks the pathway to nitric oxide synthesis via tumor necrosis factor (TNFa) and Interleukin 1a.
    Eukaryotic Cell Culture Applications

    Cyclosporins have used as tools to study complex biological networks and pathways, involving protein function, and protein-protein interactions. Cyclosporin A had a suppressive effect on the Hepatitis C virus (HCV) replicon at the RNA level and HCV protein expression in cultured hepatocytes. Cyclosporin A also inhibited multiplication of the HCV genome in a human hepatocyte cell line infected with HCV using HCV-positive plasma (Watashi et al, 2003).  Cyclosporin A has been used to establish Epstein-Barr virus-transformed human lymphoblastoid cell lines (Anderson and Gusella 1984).

    Cyclosporin’s immunosuppressive properties and potential toxicity can be studied during in vitro assays. Other metabolites of Cyclosporin A (AM1, AM1c, DihydroAM1, AM19, and AM4N) can also be studied (Vollenbroeker B et al, 2005).

    Molecular Formula C62H111N11O12
    References

    Anderson MA and Gusella JF (1984) Use of Cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20(11):856-858. PMID 6519667

    Copelan KR, Yatscoff RW and McKenna RM (1990) Immunosuppressive activity of Cyclosporine metabolites compared and characterized by mass spectrometry and nuclear magnetic resonance. Clin. Chem. 36(2): 225-229. PMID 2137384

    Dreyfuss, M et al (1976)  Cyclosporin A and C.  Eur. J. Appl. Microbiol. 3(2): 125-133
     
    Laupacis A et al. PA (1982) Cyclosporin A: A powerful immunosuppressant. Can. Med Assoc. J 126(9):1041-1046 PMID 7074504

    Matsuda S and Koyasu S (2000) Mechanisms of action of Cyclosporine. Immunopharmacol. 47(2-3): 119-125. PMID 10878286

    Oliyai R. & Stella V. J. (1992)  Kinetics and mechanism of isomerization of Cyclosporin A. Pharm. Res. 9(5):617-622

    Stiller, CR and Ulan RA (1981) Cyclosporin A: A powerful immunosuppressant. Can. Med. Assn. 126 (1981): 1041-046.

    Vollenbroeker B et al (2005)  Determination of Cyclosporine and its metabolites in blood via HPLC-MS and correlation to clinically important parameters.  Transplant Proc. 37(4):1741-1744  PMID 15919451

    Wang, PC et al. (1989) Isolation of 10 Cyclosporine metabolites from human bile. Drug Metab. Dispos. 17(3): 292-296 PMID 2568911

    Watashi K, Hijikata M, Hosaka M, Yamaji M, Shimotohno K (2003) Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatol. 38(5):1282-1288. PMID 14578868

    Zheng XS, Chan T, and Zhou HH (2004) Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem and Biol 11(5):609-618 PMID 15157872